3D METRIC RECONSTRUCTION WITH AUTO CALIBRATION METHOD
CS 283 Final Project
Tarik Adnan Moon
tmoon@collge.harvard.edu

Abstract

In this paper, different methods for auto camera calibration have been studied for metric
3D reconstruction from a set of images. Theoretical framework from different computer
vision literatures have been evaluated, and finally factorization based methods have been
implemented for metric construction of a scene from a number of images taken by uncali-
brated cameras. Then results are presented for the collected image sets and the performance

has been evaluated.

1 Introduction

In the advent of affordable 3D printing technology, 3D metric construction is becoming increas-
ingly important. Moreover, as other similar fields such as robot vision, robot navigation etc.
are becoming increasingly popular, and we are having more and more image capturing capabil-
ities in the everyday devices we use, finding a good solution to camera calibration and metric
reconstruction without any information about the camera can be important.

In this project, we have studied several relevant computer vision literatures that tried to
solve problems such as auto-calibration, metric reconstruction etc. separately. This project
tried to unify those approaches and find find a simple, but effective system for recovering 3D
reconstruction from an image set.

In this paper, first we study different theoretical paradigms for metric reconstruction and
the discuss the relations of those algorithms with classic projective geometry. Then we discuss
the algorithmic framework and the details of the implementation. Finally we conclude and
discuss the results we found from the implementation and we propose a few possible future

improvements that can be done to this implementation.

2 Notation and Basic Principle

In this section, we will briefly discuss the mathematical notations and principles used in the
paper. This paper follows the notations of Zisserman et al. very closely. We know from [1] that

a camera matrix P can be decomposed into
P = K[R| — RC]|

where K is the camera calibration matrix, R the rotation matrix, and C' the matrix representing
the center of the world frame.
2.1 3D to 2D Mapping Process in Cameras

So for any 3D point X in the world frame, the camera matrix P projects it onto a 2D plane

and gives a 2D point (and we can "undo” the effect by the inverse transformation) . Mathe-

CS 283 1 Tarik Adnan Moon

matically, this can be written as
r=PX

However, this projective mapping is true upto a constant depth factor A. i.e. in the metric
space
Ar = PX

In this paper, our main challenge is finding the camera matrix to recover the true 3D
structure from multiple views. For that purpose we use matrix factorization techniques and a

few results from basic projective geometry.

2.2 Some Well Known Results

In the next section, we will be using the following well known results from projective geometry.
All of them are proved in Zisserman et al. [1]. So we will just state the results and leave the

results to be verified from the book or by the readers.

Result 1. If w* is the dual image of the absolute conic, and K the camera calibration matrix,
then
w*=KKT

(p. 210)

Result 2. If w* is the dual image of the absolute conic, and 2%, the absolute dual quadric then

w* = P PT
(p. 201)
Result 3. In euclidean frame Q% has the canonical form
QY =HI'H
where
;|13 0
0" 0
(p- 83)
Result 4. Q_ can be represented by
0 — KKT —-KK"a
| -a"KKT o"KKTa
where the plane at infinity
ol
Moo =)
(p- 464)

CS 283 2 Tarik Adnan Moon

3 Mathematical Framework and Algorithms

The mathematical framework needed for the project to be implemented can be divided into 3
parts. The first step is matching the 2D points on the images using SIF'T matching techniques
and get a get of 2D points. The second step is finding the projective depth and projective
camera matrix using factorization techniques. The final step is finding the camera calibration
matrix by using auto-calibration techniques and from that infer the 3D metric reconstruction.
As we did not implement SIFT and rather used the openCV implemented version. So we’ll just

discuss the algorithmic framework for the other two steps:

3.1 Projective Reconstruction and Depth Recovery

i
J
where each n points are taken by a camera with camera matrix P?, for the representative 3D

For this part we used the result discussed by Strum et al. in [2]. For a set of m X n points =

world point X; we have (see section 2.1)
Qi _ piy
Nat = P'X,

stacking the relations we get the following matrix equation:

Mzt ALzl P!
W = : : =1 : X, - X,
ATt e AT pm

First for getting the depth information and recovering the projective reconstruction we use

the following algorithm by [1]:

1. First we normalize the pixel values using isotropic scaling (i.e. make sure that the RMS
distance from mean is /2 (see [1] p.109).

2. Start estimating projective depth. Here we start with all \; = 1 and continue with iterative

scaling.

(a) Rescale each column k so that
3m
> wh =1
i=1

(b) Rescale each triplet of wors (3k — 2,3k — 1,2k such that

n 3k
> D wh=1
k=11i=3k—2

(c) repeat (a), (b) if the entries of the matrix changes significantly. For our implementa-
tion we repeated if our RMS difference between the previous and the current matrix
exceeded 5%.

CS 283 3 Tarik Adnan Moon

3. Finally we compute an SVD of W to find
W =UDV"

Now we let D’ to be the D matrix except all but the first four diagonal entries to be set
to 0 i.e.
D= diag(017"' 04,0, 70>

Then from this factorization we estimate:
Pl
=UD’
Pm
and

[Xl Xn} —yT

3.2 Auto-calibration and Metric Reconstruction

The problem with projective reconstruction is that it is very different from the actual real-world
euclidean reconstruction. So the metric reconstruction differs from it by a 4 x 4 homography
matrix H, and this can be easily seen from the following argument:

If { P, X,} is a projective reconstruction then for any homography H, {P'H, H =X} works too.

So we need to find a rectifying homography H. For this part we used the result by Pollefeys
et al. in [3] and the basic projective geometry facts discussed in section 2.2. Using results 1

and 2 from section 2.2 we can write
w*=KKT = PQ: PT..... (%)

Now using result 3 and 4, we have

O =
—a'KKT oTKKTq

CLT
Too — 1
fo

Then we assume that the camera has skew, s = 0, known pixel ratio =T 1 and principal

KKT —KKTa]

where

point at origin o, = a, = 0. Although these are not necessarily exact results, for the sake of

finding linear approximation these are reasonable assumptions to make. Then normalizing by

In general the pixel ratio of cameras are mostly standard, the DSLRs have 2:3 ratio, cellphone and other
low end cameras have 3:4 pixel ratio. In general it can be found by taking the dimension ratio of any uncropped
photo from a camera

CS 283 4 Tarik Adnan Moon

the pixel ratio, we can write our camera calibration matrix as

F 00

K=X|0 f 0

0 0 1

then we can simplify equation (*) as
by 0 0 b
2000 O1 by O b2
Xlo 2 ol =pPo.Pl =P ! 5| pT
0 1 by
0 0 1

ba by by bs

Now comparing the sides we have the following relations

* %
W11 =Wag,
* 0k _ * _
Wy =Wy = wyp = 0,
* X _ *
Wi =Wgp =wy; =0
and due to the symmetry in the last to equations we have the following matrix equations

PO pWT _p@as p@T

%

T
PO p@" g

T
PWop®" g

T
PO P g

(where Pi(i) means the i-th column of P matrix.) When we have at least 3 non-degenerate views
we can easily solve this system as we have 4(n — 1) independent linear equations in b; (as Q%

is parametrized by b;’s).

4 Implementation Details

In this section, we will discuss the whole implementation process— from image collecting to 3D

model construction and visualization.

4.1 Image Set Collection

We got two sets of images from the Oxford University Visual Geometry group— we took the
dinosaur (toy) and model house datasets for images. Then we took out own images with a
Canon DSLR camera with 50mm lens and an iPhone. For this project we just decided to keep
the photos taken by the DSLR due to their superior image quality and due to our goal of keep
the calculation simple. However, as we have seen this can be organically extended to more

general case.

CS 283 5 Tarik Adnan Moon

4.2 Implementation in Python

We implemented the aforementioned algorithms using Python. We used numpy, scipy, and
openCV libraries. The first two were used for doing efficient matrix calculations and the the
last one was used for image manipulation and vision. More precisely, we used opencv to find
feature matches between images using SIFT. Then we also used them to find the calibration for

the camera we used to find how good our auto calibration performed.

4.3 Visualization with CMVS

Finally as our project did not involve any good visualization methods for showing the actual 3D
metric constructions we had to use CMVS library to plot the 3D points and the 3D reconstructed

versions with textures.

5 Results

In general it is very hard to test the accuracy of these models because without some sophisticated
methods for tracking the points on the 3D plane it is hard to measure the absolute accuracy
of the metric reconstruction. However, luckily for the first and second image set (dinosaur and
model house) the camera matrix was given with the dataset. And for the second dataset (model
house) the 2D and 3D points were given from a metric reconstruction. Then for the third image
set (glue bottle), we used openCV camera calibration module for finding the camera calibration
matrix.

Our camera had the following RMS error rates (compared to the ones found using direct

camera, calibration):
e First set: 3.2%
e Second set: 3.1%

e Third set: 4.7%

The reason for increased error in the third set is that most of the glue bottle was white colored
and the SIFT algorithm was confused when it was detecting and matching features.

And then we computed the error in 3D metric reconstruction for the second set (we had 2D
to 3D correspondence data only for this set) and we found 5.6% error it terms of RMS distance.

While our result is worse than the result found by Pollefeys et al., we used much simpler
linear model instead of the quadratic approach taken by the paper. Moreover, our result is more
robust and did not use any assumption that the turntable model did (in the case of the Visual
geometry group).

As we did not implement any visualization ourselves in the project, we used CMVS [6] just

for demonstrating the 3D reconstruction. Here are the visualization of the 3D reconstructions:

CS 283 6 Tarik Adnan Moon

Figure 1: 36 images of dinosaur

Figure 2: 3D point plotting

We found that the dinosour model worked pretty well because it had a lot of unique features
that was extracted by the SIFT.

CS 283 7 Tarik Adnan Moon

Figure 4: 3D reconstruction of the glue bottle with texture mapping (using CMVS)

6 Future Improvements

There are several future improvements that we could not implement due to their complexity and
time limitations of the project. In this section we will discuss those possible future improvements

and how they could possibly improve the results.

6.1 Pre-determining the projective depth mapping:

We start with a projective depth of A\; = 1 as our first step of projective reconstruction. However,
that might take a large number of iterations to converge with the repeated scaling method we

described in section 4 (in fact, theoretically it is not guaranteed that this approach will ever

CS 283 8 Tarik Adnan Moon

converge). So there is a better method to precompute a projective depth mapping using the
epipole and fundamental matrix by Strum et al.. Although the pre-computed projective depth
mapping is true upto a scalar factor, we can use the same iterative method to improve our result

more accurately using the method, and this time it is guaranteed that the values will converge.

6.2 Bundle adjustments

We could also use bundle adjustemnt to reduce the geometric error of projective rectification
and the calibrated camera matrix. That way we would be able to further reduce the estimation

error.

6.3 Other Possible Algorithms

There are a few other algorithms that are not as general as the approach we studied, but are
reportedly more accurate for metric reconstruction. For example, we could use the rotating
camera model, or turn-table model for finding the camera calibration matrix and from there we

could find the metric reconstruction using the approach we described in the paper.

6.4 Parallel computing

The process of auto calibration (especially SIFT matching, matrix factorization, iterative scal-
ing) is a computationally very expensive. It took us about 10 minutes to complete the compu-
tation with a set of 81 images. So the process is not actually real time. So we can use parallel
computing, especially GPU computing environment such as CUDA, to make this process ex-

tremely fast

Acknowledgment

We would like to thank Professor Todd Zickler for helpful instructions and insights about the
project. We would also like to thanks TF loannis Gkioulekas and Ying Xiong for helping to
understand the concepts. Finally, we would thank our peers in the CS 283 class for their helpful

discussions and questions.

References

[1] Hartley, R. I. and Zisserman, A. Multiple View Geometry in Computer Vision. Second
edition, 2004. Cambridge University Press, ISBN: 0521540518

[2] Peter Sturm and Bill Triggs. A factorization based algorithm for multi-image projec-
tive structure and motion. 4th European Conference on Computer Vision, Cambridge,
FEngland, April 1996, pp. 709-720 .

[3] Marc Pollefeys, Reinhard Koch and Luc Van Gool. Self-Calibration and Metric Recon-
struction Inspite of Varying and Unknown Intrinsic Camera Parameters. International
Journal of Computer Vision 32(1), 725 (1999)

CS 283 9 Tarik Adnan Moon

[4] Motilal Agrawal. Practical Camera Auto Calibration using Semidenite Programming

[5] University of Oxford Visual Geometry Group Dataset.
http://www.robots.ox.ac.uk/ vgg/data/data-mview.html

[6] Yasutaka Furukawa and Jean Ponce. Accurate, Dense, and Robust Multi-View Stereopsis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, Issue 8, Pages
1362-1376, August 2010.

[7] The OpenCV Library Dr. Dobbs Journal of Software Tools (2000) by G. Bradski

CS 283 10 Tarik Adnan Moon

